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Synopsis 
The mechanical behavior of microporous polyurethane foams used in poromeric ma- 

terials can be described by use of a model comprising of struts of square cross section 
arranged in a cubical lattice. The model was initially pr0pcm-d by Gent and Thomas 
to describe the properties exhibited by natural rubber latex foams. The microporous 
polyurethane foams used in poramerics are in general much stronger than natural rubber 
foams, and it has been found that their tear and tensile properties are dependent on the 
size of the largest pore, which can be up to 20 times greater in diameter than the average 
pore size. The behavior of the polyurethane foam in compression can be satisfactorily 
described by use of this cubical model and shape factor theories from polymer engineering. 

INTRODUCTION 
The study of the mechanical properties of cellular or foamed polymers as 

distinct from solid materials was started in the late 1920’s with the devel- 
opment of blown or expanded rubber. A number of early paper~l -~  dis- 
cussed the physical properties such as density, hardness, tensile, hysteresis, 
damping, cell size, and insulation properties of these materials. 

Latex foam rubber was developed in the early 1930’s, and a number of 
investigations have been undertaken4-’ into the tensile and compression 
properties of these materials. Most authors showed that the load-exten- 
sion curves of foamed materials were sigmoidal, but little theoretical work 
analyzing such deformations was reported although an extensive anal- 
ysisB-l0 of the elastic properties of cork was made in 1946 and showed that 
the sigmoidal load-compression curves obtained with cork could be inter- 
preted on the basis of collapsing of cell walls. 

It was not until 1959 that a theory to describe the mechanical properties 
of foamed elastic materials such as modulus, compression, tear, and tensile 
was developed by Gent and This theory has now been de- 
veloped further to  describe visc~elast ic~~ and permeability lfi properties of 
open-cell foamed materials and elastic behavior of closed-cell materials13 
and has been successfully applied to  measurements on natural rubber foams. 

Little work, however, has been reported on the application of a theoretical 
model to the mechanical behavior of polyurethane foams. The advent of 
poromericsl8*l7 into the footwear industry has necessitated some investiga- 
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tion into the strength and mechanical properties of microporous poly- 
urethane foams, and it has been found that these materials are extremely 
strong when compared with vulcanized synthetic or natural sdid rubber. 

This paper discusses the modulus, compression, tear, and tensile proper- 
ties of polyurethane foams used in poromeric materials and relates these 
measurements to the theoretical model proposed by Gent and Thomas and 
also to other established theories from rubber elasticity and polymer engi- 
neering. 

EXPERIMENTAL 

Samples of polyurethane foams were obtained from two commercially 
available poromerics: foam 1 was approximately 0.17 cm thick, while 
foam 2 was only 0.014 cm thick. It was necessary in the analysis of the 
results to obtain certain measurements on the solid polyurethane used in 
the foam. Unfortunately, it was not possible to obtain the solid polymer 
direct, and hence it was necessary to dissolve the foam in a suitable solvent 
and to cast the solid material. The solvent was then drawn off under heat. 
The densities of the foam and solid were measured in both cases. Tensile, 
tear, and compression data on the materials were obtained by use of an 
Instron tensile testing machine using suitable jaws and attachments for each 
particular experiment. 

The type of cell structure found in the polyurethane foams can be seen 
in the stereoscanls photomicrograph shown in Figure 1 above. The cells 
are reasonably spherical, with the average diameter about cm, and can 
clearly be seen to be interconnecting. 

THEORETICAL MODEL 

The model proposed by Gent and Thomas13 for a foamed material is 
shown in Figure 2; it consists of thin threads of unstrained length lo and 
cross-sectional area D2 joined together to form a cubical lattice. The inter- 
sections of cubical regions of volume D3 are assumed to be essentially unde- 
formable. 

A fractional extension of the foam by an amount e' parallel to one set of 
threads is therefore associated with a larger extension e of the threads them- 
selves, as follows : 

- I + @ .  
e l o+D 
e' lo 
- 

The threads in the model occupy, for any cross section perpendicular to one 
set of threads, a fractional area of the total given by 
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Fig. 1. Scanning electron microscope photograph of polyurethane foam showing type of 
cell structure. Magnification 3,2000X. 

Fig. 2. Simple model of foamed material. After Gent, and Thomas.13 
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Fig. 3. Variation of parameter @ with foam density, from eq. (3). 

The fractional volume V ,  occupied by the solid material can be evaluated 
by considering a cube of side (D  + Zo) centered on one intersection, so that 

The parameter 0 therefore gives a direct measure of the foam density, and 
the relationship is shown graphically in Figure 3. 

MODULUS 

The tensile stress-strain curves of foam 1 and the corresponding solid 
material are shown in Figure 4. The tensile stress for the foam is based 
on the cross-sectional area of rubber, including holes. The results for a 
typical unfilled solid natural rubber vulcanizate from previous 
are also shown in Figure 4 for comparison; and it can be seen that the initial 
modulus of the polyurethane foam is higher, although the actual tensile 
strength is lower than the NR vulcanizate. The modulus of the solid poly- 
urethane is extremely high when compared to the corresponding foam, and 
its tensile strength is considerably in excess of that found in the natural 
rubber vulcanizate. The initial linear part of the stress-strain curve for 
both the foam and the solid polyurethane allows a value of Young's modulus 
to be obtained. 
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Fig. 4. Comparison of tensile stress-strain curves for polyurethane foam and solid and 
natural rubber vulcanisate. 

It is possible to determine theoretically a value for Young's modulus of 
the foam, YF,  by considering the extension of the model shown in Figure 2. 
If a small strain is applied parallel to one set of threads, YF can be obtained 
from the product of three factors: (i) Young's modulus of the solid material, 
Y; (ii) the strain magnification factor, eq. (1); (iii) factor representing the 
true load-bearing area, eq. (2), hence producing the equation 

Using a more complicated yet more realistic model of a system of n ran- 
domly disposed threads entering each intersection and approximating 
these by spheres of surface area nD2, Gent and Thomas'l found that the 
density of the foam was given by the same relation, eq. (3)' and the equation 
for Young's modulus was only different by a factor of 2 from that given in 
eq. (4). 

Hence, Young's modulus can be obtained from 

The ratio Y F / Y  from the experimental results of Young's modulus for 
the two polyurethane foams and solid materials are plotted in Figure 5 
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Fig. 5. Variation of Young’s modulus of foam, YF, referred to that of the solid poly- 
urethane, Y, with volume fraction, V,, of rubber in the foam. Solid line is t.hatf pre- 
dicted by eq. (5) from theory of Gent and Thomas.13 

against the volume rubber fraction V ,  determined from measured densities 
on the materials. Also shown on Figure 5 is the theoretical line obtained 
from eqs. (3) and (5). The values obtained for Young’s modulus are there- 
fore in reasonable agreement with theory. There is likely to be some error 
in the measurement of Young’s modulus of the solid polymer in view of the 
difficulties involved in obtaining the material. 

TEAR PROPERTIES 

The most convenient method of measuring tear properties of rubber-like 
materials is to use the “tearing energy” approach developed by Rivilin and 
Thomas21 from the classical theory on the’strength properties of glass de- 
veloped by GrifKths22 in 1920. Tearing energy T is defined for a strained 
test piece containing a crack as 

where U is the total elastically stored energy in the test piece and A is the 
area of the cut surface. The derivative must be taken under conditions 
that the applied forces do not move and hence do not work. It thus repre- 
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Fig. 6. “Trouser” tear test piece used in tearing energy measurments. 

sents the rate of release of strain energy as the crack propagates and can 
therefore be considered as the energy available to drive the crack through 
the material. It has been found that if tear or crack-growth measure- 
ments are expressed in terms of T ,  the results obtained from test pieces of 
different shapes are the same, and hence values of T are characteristic of 
the material and not of the form of the test The “trouser” tear test 
piece shown in Figure 6 was used for the present investigation, as the value 
of T can readily be calculated from the applied force F by the relation- 
ship21,24 

2F 
h 

T = -  (7) 

where h is the test piece thickness. 
Aleasured values of tearing energy from both foams are shown in Table I. 

A considerable difference was noted between the values of initial tearing 
and those for steady propagation of the tear. Asimilar difference in tearing 
energy values was also reported for latex foam rubbers by Gent and 
Thomas.13 

TABLE I 
Values of Tearing Energy 

T (initiation), 
Foam kg/cm T (steady), kg/cm B 

1 12.7 43.5 0.816 
2 20.3 54.7 1 .3.5 

The minimum theoretical value of tearing energy, TF,  for the model foam 
shown in Figure 2 is given by the energy required to break all the threads 
crossing a plane of unit area. The proportion of these threads to the total 
area of the foam structure is given by eq. (2), and hence the tearing energy of 
the foam is given by 

where E, is the breaking energy per unit volume of the bulk materials. 
The quantity 10 (i.e.) one thread length) is assumed in the theory to be the 
effective “width” of the tear tip and is obviously the minimum possible 
value. Assuming that the model shown in Figure 2 can be applied to poly- 
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Fig. 7. Scanning electron microscope photograph of polyurethane foams used in this 
investigation showing that some pores can be of the order of 1 0 - 2  cms. Magnification 
1oox. 

urethane foams, it is possible to calculate 20 and compare this with the aver- 
age and largest pore diameter obtained from microscopic measurements. 
The value p was found from the curve shown in Figure 3 by measuring 
the densities of the solid and foam polyurethanes. Values of B for foams 1 
and 2 are listed in Table I. The values for E,  were found by graphically 
integrating the stress-strain curves for the two samples of solid poly- 
urethane. On substituting these values in eq. (8), lo was found to be 4X 

cms for both foam 1 and foam 2. Although the average pore diameter 
is about 2 X loA3 cm for both foams, odd pores as shown in the scanning 
electron microscope photograph in Figure 7 can be up to 2X cm in 
diameter. 

Hence it can be considered that values for initiation of a tear can be ob- 
tained from eq. (8) by assuming that the effective width of the tear tip is 
about two times the largest pore diameter. This difference is probably due 
to imperfections in the foam causing local deviations of the tear from a 
linear path which gives rise to a corresponding larger effective tear width. 

Gent and Thomas12 found that the effective width of the tear tip for 
natural rubber foams at similar densities to the polyurethane foams in this 
paper was about five times the average pore diameter. Average pore 
diameters in their case, however, were a factor of 10 larger than those of 
the polyurethane foams used in this study. 
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TENSILE FAILURE 

Following the tearing energy criterion developed by Rivlin and Thomas,z1 
it can be assumed that tensile rupture occurs by catastrophic tearing from a 
flaw in one of the test piece surfaces. The tearing energy of the foam, TF 
can then be expressed asz3 

Tw = 2kEwL (9) 
for a test piece strained in simple extension where E F  is the energy density at 
failure in the bulk of the test piece for the foam, L is the depth of the flaw, 
and k is a numerical constant which varies slightly with strainz5 but can be 
taken for the purposes of this paper as having a value of 2. 

The depth of flaw can then be calculated by measuring the tear strength 
and energy density to failure of the foam and substituting these values in 
eq. (10): 

The EF value was obtained by measuring the area under the stress-strain 
curve of the foam. Using values of tear strength at  initiation listed in 
Table I, L was found to be 1.72X cm for 
foam 2. These values are very close to the largest pore diameters measured 
from scanning electron microscopy photographs. The numerical agreement 
suggests that tensile failure occurs by catastrophic tearing from a flaw of 
the order of the largest pore in length. This conclusion is in agreement with 
the work by Gent and Thomas on natural rubber foams and hence accounts 
for the relatively low values of tensile strengths found in foam materials in 
general. 

cm for foam 1 and 2.3X 

COMPRESSION 
The type of stressstrain curve obtained in compression for the poly- 

urethane foams used in poromerics is shown in Figure 8. Similar results 
have been reported previously for compression of polyurethane f ~ a m s . ~ ~ ~ ~ ~  
The type of curves obtained resemble those for the classical treatment of the 
buckling of a simple strut in compression. For foam 1, the ratio of thread 
length to width of the threads (i.e., p-’) is 1.23, and hence the amount of 
buckling of the threads would be minimal. The classical Euler theory for 
buckling of struts can only be applied@ if the length of the struts is at least 
3.8 times their thickness, but it is informative to ascertain whether the 
assumed point of buckling (i.e., point a t  which curve changes slope) can be 
correlated with accepted “shape factor” theories of buckling from rubber 
engineering. 

The critical compressive strain, e,, of the individual threads of the model 
is given by29 

f fC 

Y ( l  + 282) 
e, = 
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Fig. 8. Compressive stress-strain obtained for foam 1. Figure also shows retractiou 
curve and second compressive stress-strain curve, indicating the large amount of stress 
softening and hysteresis. 

where U, is the critical compressive stress, Y is Young’s modulus of the 
solid material, and S is the shape factor of the strut in compression as dis- 
cussed by Payne30 and others29 in rubber engineering theory and defined as 
the ratio of the one loaded area to  the total force-free axea, and given by 

for a single rectangular strut such as those comprising the model structure 
shown in Figure 2. 

For foam 1, S therefore has a value of 0.204. The value of stress at 
which the compression stress-strain curve in Figure 8 shows departure from 
linearity is 4.05 kgf/cm2. The effective stress, however, on each strut in 
the model will be much higher, as they only occupy a fractional area of the 
total as given by eq. (2). For P of 0,816, as in the case with foam 1, the 
threads occupy only 0.2 of the total cross-sectional area of the foam; hence 
the critical buckling stress u, for each thread in the model is 20.25 kgf/cm2. 

Using this value for U,  and the value of 387 kgf/cm2 predicted by eq. (5) 
for Young’s modulus of the solid material from measurements of Young’s 
modulus on the foam, a value for critical compressive strain e, of the struts 
of 0.05 is obtained. The actual effective buckling strain of the foam, 
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etC, will be lower, however, due to the undeformable regions at thread inter- 
sections as predicted by eq. (1). Hence the critical compressive strain of 
the foam from theory is 0.03, which compares reasonably well with the ex- 
perimental value of 0.056 obtained from the compression stress strain curve 
in Figure 8. 

An alternative approach adopted by Gent and Thomas13 is to include in 
the classical Euler strut theory an unknown function of strain, f ( e ) .  The 
compression is assumed to be directed parallel to one set of threads in the 
model structure shown in Figure 2 and to take place by buckling of these 
threads. The force F on each thread is given by 

Y A K 2 f  (e )  
lo2 

F =  

where AK2 is the moment of inertia of the thread cross section. For 
threads of similar cross section, A K z  = mD4, where m is a constant. The 
number of threads per unit cross-sectional area is given by (lo + D)-2,  and 
hence the average compressive stress t is given by 

by substituting P for D/lo and absorbing the constant m in f ( e ) .  
Bulk compressive strain e' is, however, influenced by two factors which 

can be considered additive : firstly the incompressibility of thread inter- 
sections as predicted by eq. (1) and secondly a contribution from simple 
compression of the threads by an amount ~ / Y F .  Hence the bulk compres- 
sive strain e' will be given by 

The application of such a theory to polyurethane foams is difficult, for, as 
can be seen in Figure 8, they display a large amount of energy loss or 
hysteresis and also a considerable amount of stress softening (i.e., the reduc- 
tion in stress on the second extension curve). Although stress softening has 
been extensively s t ~ d i e d ' ~ ~ ~ ~  in tension, little work appears to  have been re- 
ported on stress-softening effects in compression. 

Despite the large amount of hysteresis, the analysis along the lines sug- 
gested by Gent and Thomas has, however, been also adopted in this paper 
to ascertain the form of the function f ( e ) .  

By substituting measured values for bulk compressive stress t and bulk 
compressive strain e' from Figure 8, it is possible, using the derived value 
for P and experimental values of Young's modulus for the solid polyurethane 
and foam, to obtain corresponding values of f ( e )  and effective strain e of the 
threads in the model by use of eqs. (14) and (15). The relationship derived 
is shown in Figure 9. It is of the general form expected for a buckling 
process and is very similar to that obtained for natural rubber foams,13 al- 
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Fig. 9. Variation of f(e) with thread compressive strain e obtained from stress-strain 
curve shown in Figure 8. 

though compression tests on the latter were only reported for foams with 
values of V ,  less than 0.2. 

CONCLUSIONS 
The theoretical model proposed by Gent and Thomas which has been 

applied in this paper to the mechanical behavior oypolyurethane foams is a 
very idealized representation of an actual foam, which in practice must be 
far from homogeneous. The actual threads and intersections are of a wide 
range of shapes and sizes, as can be seen from the stereoscan photomicro- 
graphs. The apparent good agreement therefore obtained between experi- 
mental values of Young’s modulus and theory is very satisfactory, partic- 
ularly in view of the difficulties that occur with obtaining a reasonably good 
sample of solid material. 

The measured values of breaking energy are in good agreement with 
those calculated on the assumption that tensile failure occurs by tearing at 
the tip of the largest pore, which is the same criterion as that found for 
natural rubber foams. 

Values for tear strength at the initiation of a flaw can be obtained from 
the theory by assuming that the effective width of the tear tip is about twice 
the largest pore diameter. Tear strength results on polyurethane foams 
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thus appear to differ from those on natural rubber foams as Gent and 
Thomas found that tear strength was much more dependent on the average 
pore diameter. In the case of the polyurethane foams examined in this 
paper the average pore diameter was at least a factor of 10 lower than the 
maximum pore diameter. 

The shape of the compression stress-strain curve is similar to that ob- 
tained from the buckling of a strut in simple compression and can reason- 
ably be described by the model proposed on the assumption that the threads 
in the model buckle under a compressive load. The arbitrary function 
f(e) provides a measure of the inhomogeneity of the foam structure, and 
the variation of f(e) with strain is of the same form as that found for natural 
rubber foams. An alternative approach by use of shape factor theories 
predicts within a factor of 2 the value of the compressive buckling strain 
as compared with the value shown by the deviation in linearity of the 
compression stress-strain curve. 

Thus, the fairly simple model of a collection of thin threads of equal 
length joined together to form a cubical lattice appears to predict reason- 
ably well the mechanical behavior of polyurethane foams used in poromerics. 

The author is indcbted to Dr. A. R. Payne (Directx of SATRA) and to Dr. C. M. 
Blow (Loughborough University) for their helpful advice and encouragement throughout 
the course of this work and also to Mr. N. J. Cross for his assistance in the experimental 
measurements. 
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